How have COVID-19 and the Policy Objective of Access to Care Altered the Cost-Volume-Profit Relationships of U.S. Hospitals?

WHY?

- Ist Documented case of COVID-19 in U.S.
 - January 2020 (AJMC 2021)
 - Many occurred earlier
- Federal & State governments implemented controversial policies
 - Economic lockdowns
 - Financial subsidies to
 - Hospitals
 - Individuals
- Patients with COVID-19 began to crowd-out other hospital services
 - Essential care
 - Profitable elective procedures
- Thus, hospitals had significantly affected "CVP"
 - Costs
 - Patient <u>Volumes</u>
 - Profitability

3

WHY?

WHY?

PATIENT VOLUME

- Volume is composed of
 - Patient discharges, adjusted by
 - Case Mix Index
 - Quality of Care
 - Ongoing shift to Outpatient setting

(Eldenburg & Kallapur 1997; Eldenburg et al. 2017)

CONTRIBUTIONS

- First study to directly adjust patient volumes by Quality of Care using
 Medicare Readmission Rates and examine
 - Hospital responses to the effects of
 - COVID-19 Pandemic and
 - Government policy / subsidy initiatives
- Fills a gap in the literature by directly addressing
 - Per Unit
 - Revenues
 - Costs
 - Contribution Margins

CONTRIBUTIONS (cont'd)

- Examines patient Volume adjusted for
 - Case Mix
 - Quality of care
 - Relative Outpatient-Inpatient service provision
 - On national scale, as influenced by
 - Public subsidies and conditioned on
 - Comprehensive set of Control Variables
- Develops research expectations from the perspective of
 - Agency Theory
 - Resource Dependency Theory and demonstrates
 - Significance of constructs in this salient context

CONTRIBUTIONS (cont'd)

- Thus, our study provides Information Useful for the
 - Development and Tests of Economic Theory
 - Evidence-based Public Health Policy making with regard to
 - Services and Payment System effects
 - Advancement of Hospital Management Practice relative to
 - Unexpected Shocks in the health service delivery system

HYPOTHESES

Using NP hospitals as our reference group:

- H_{01} : The onset of COVID-19 has no effect on hospital CVP relationships.
- H₂: The economic incentives inherent in the FP type of control will be negatively associated with effects of COVID-19 on hospital revenues, costs and volumes.
- H₃: The economic incentives inherent in the GOV type of control will be positively associated with effects of COVID-19 on hospital revenues, costs and volumes.

VOLUME METRIC

QUALITY = (I – Medicare Readmission Rate)

- CMI = Medicare Case Mix Index indicating a hospital's relative mix of complex and resource intensive patients, compared to the national average
- OP-IP_Adj = Adjustment factor for the relative proportion of Outpatient to Inpatient service provision by a hospital: (Outpatient Charges + Inpatient Charges) / Inpatient Charges
- Adj_VOL = Adjusted patient service volume: Total Inpatient Discharges × QUALITY × CMI × OP-IP_Adj

MODELS

Revenues:

 $UNIT_REV = \theta_0 + \theta_1ROA + \theta_2LEV + \theta_3SIZE + \theta_4COVID + \theta_5FP + \theta_6FP*COVID + \theta_7GOV + \theta_8DISTR + \theta_9SPCLTY + \theta_{10}URBAN + \theta_{11}CHAIN + \theta_{12}TEACH + \theta_{13}State Fixed Effects + e (I)$

 $UNIT_REV = \theta_0 + \theta_1ROA + \theta_2LEV + \theta_3SIZE + \theta_4COVID + \theta_5FP + \theta_6GOV + \theta_7GOV*COVID + \theta_8DISTR + \theta_9SPCLTY + \theta_{10}URBAN + \theta_{11}CHAIN + \theta_{12}TEACH + \theta_{13}State Fixed Effects + e$ (2)

 H_{01} : The onset of COVID-19 has no effect on hospital CVP relationships.

12

н

MODELS (cont'd)

Costs:

 $UNIT_EXP = \beta_0 + \beta_1ROA + \beta_2LEV + \beta_3SIZE + \beta_4COVID + \beta_5FP + \beta_6FP*COVID + \beta_7GOV + \beta_8DISTR + \beta_9SPCLTY + \beta_{10}URBAN + \beta_{11}CHAIN + \beta_{12}TEACH + \beta_{13}State Fixed Effects + e$ (3)

UNIT_EXP = $\beta_0 + \beta_1 ROA + \beta_2 LEV + \beta_3 SIZE + \beta_4 COVID + \beta_5 FP + \beta_6 GOV + \beta_7 GOV*COVID + \beta_8 DISTR + \beta_9 SPCLTY + \beta_{10} URBAN + \beta_{11} CHAIN + \beta_{12} TEACH + \beta_{13} State Fixed Effects + e (4)$

H₂: (FP, negative association) H₃: (GOV, positive association)

13

MODELS (cont'd)

Volume:

 $LnAdj_VOL = \theta_0 + \theta_1ROA + \theta_2LEV + \theta_3SIZE + \theta_4COVID + \theta_5FP + \theta_6FP*COVID + \theta_7GOV + \theta_8DISTR + \theta_9SPCLTY + \theta_{10}URBAN + \theta_{11}CHAIN + \theta_{12}TEACH + \theta_{13}State Fixed Effects + e$ (5)

 $LnAdj_VOL = \theta_0 + \theta_1ROA + \theta_2LEV + \theta_3SIZE + \theta_4COVID + \theta_5FP + \theta_6GOV + \theta_7GOV*COVID + \theta_8DISTR + \theta_9SPCLTY + \theta_{10}URBAN + \theta_{11}CHAIN + \theta_{12}TEACH + \theta_{13}State Fixed Effects + e$ (6)

H₂: (FP, negative association) H₃: (GOV, positive association)

RESULTS

_

TABLE 1Sample Derivation

Beginning Sample Data (hospital years 2011-2020)	61,935
Less: Hospital years with missing or out of range data values	(27,729)
Less: Long Term Care hospital years	(5,100)
Less: Hospitals with less than 10 years of data	(7,106)
Less: Hospitals that changed control type	(1,500)
Final Sample (2,050 unique hospitals with 10 years of data)	20,500

Note: Data is from U.S. Centers for Medicare & Medicaid Services, *Hospital Cost Report* Form CMS 2552-10.

15

RESULTS (cont'd)

TABLE 4: UNIT_REV

		Model 1		Model 2	
Variable	Expect.	Coeff.	p > t	Coeff.	p > t
ROA	+	782.746***	0.000	779.641***	0.000
LEV	_	-30.859	0.574	-29.084	0.596
SIZE	_	21.587	0.752	23.223	0.734
COVID	±	1,996.332***	0.000	1,693.952***	0.000
FP	_	-311.499***	0.000	-384.622***	0.000
FP*COVID	_	-720.254***	0.003		
GOV	+	1,468.515***	0.000	1,348.787***	0.000
GOV*COVID	+			1,238.330***	0.004
DISTR	+	1,059.867***	0.000	1,061.643***	0.000
SPCLTY	_	-194.664	0.270	-190.909	0.279
URBAN	_	-69.544	0.310	-70.593	0.303
CHAIN	_	-371.506***	0.000	-363.460***	0.000
TEACH	+	1,366.252***	0.000	1,361.923***	0.000
State Fixed Effects		Yes		Yes	
R^2		25.8%		25.8%	
п		20,500		20,500	

RESULTS (cont'd)

		Model 3		Model 4	
Variable	Expect.	Coeff.	p > t	Coeff.	p > t
ROA	-	-744.082 * * *	0.000	-747.007***	0.000
LEV	+	408.891***	0.000	410.835***	0.000
SIZE	-	13.034	0.810	14.6314	0.787
COVID	±	1,630.646***	0.000	1,339.095***	0.000
FP	-	-490.743***	0.000	-564.767 ***	0.000
FP*COVID	-	-729.448***	0.001		
GOV	+	1,697.684***	0.000	1,587.387***	0.000
GOV*COVID	+			1,143.079***	0.005
DISTR	+	725.900***	0.000	727.639***	0.000
SPCLTY	-	-370.489 * *	0.021	-366.909**	0.023
URBAN	-	-106.024*	0.094	-107.019*	0.091
CHAIN	-	-416.290***	0.000	-408.425***	0.000
TEACH	+	1,285.323***	0.000	1,280.981***	0.000
State Fixed Effects		Yes		Yes	
R^2		31.3%		31.4%	
n		20,500		20,500	

TABLE 5: UNIT_EXP

RESULTS (cont'd)

TABLE 6: LnAdj_VOL

		Model 5		Model 6	
Variable	Expect.	Coeff.	p > t	Coeff.	p > t
ROA	+	3,470.589***	0.000	3,467.023***	0.000
LEV	_	-884.528***	0.002	-876.392***	0.002
SIZE	+	34,865.220***	0.000	34,868.370***	0.000
COVID	±	2,451.918***	0.000	1,955.084***	0.000
FP	_	-9,152.417***	0.000	-9,351.303***	0.000
FP*COVID	_	-1,966.195*	0.061		
GOV	+	130.254	0.801	48.558	0.927
GOV*COVID	+			896.029	0.565
DISTR	+	22,898.780***	0.000	22,902.310***	0.000
SPCLTY	_	23,294.700***	0.000	23,299.960***	0.000
URBAN	_	-4,065.773***	0.000	-4,067.146***	0.000
CHAIN	-	-1,934.606***	0.000	-1,918.998***	0.000
TEACH	+	5,318.893***	0.000	5,308.022***	0.000
State Fixed Effects		Yes		Yes	
R^2		69.5%		69.5%	
п		20,500		20,500	

ROBUSTNESS TESTS

- Generalized Least Squares (GLM) model specifications
 - Our results hold
- Pairwise t-tests of differences in respective group mean values
 - Separate sample into
 - NP vs. FP
 - NP vs. GOV
 - FP vs. GOV
 - We find significant differences ($p \le 0.05$) between all groups for all tested variables

19

LIMITATIONS

- We examine only Short-Term Acute Care and Specialty Hospitals
 - In the U.S.
 - With complete data for the 10-year period
- We do not examine
 - Critical Access Hospitals
 - Long Term Care Hospitals
 - Hospitals in other countries
- Adjustment for Quality of care limited by Medicare's readmission rate measurement program
 - Scope of procedures
 - Hospital types included

CONCLUSIONS

- We examine how
 - COVID-19 and the
 - Policy objective of Access to Care
- Affected the CVP relationships of U.S. hospitals
- We use the most recent 10-years of primary source data of
- 2,050 short-term hospitals throughout the U.S.
- We find the economic incentives inherent in the different forms of FP, NP and GOV control are
 - Significantly associated with hospital responses to the pandemic crowding-out effects

CONCLUSIONS (cont'd)

In the COVID period, revenues, expenses and volumes generally increased

- However, unit revenues, unit expenses, and adj. volume are
 - Lower for FPs than ref. groups NP, GOV, DISTR
 - Higher for GOV than ref. groups FP, NP, DISTR
- Our findings are consistent with theory and thus
- Provide information useful for the
 - Development & tests of Economic Theory
 - Evidence-based Public Health Policy making
 - With regard to Services, Payment Systems and Subsidies
 - Advancement of Hospital Management Practice
 - With respect to the incentives and constraints inherent in the different types of organizational Control
 - Unexpected Shocks in the health service delivery system

FUTURE DIRECTIONS

- Examine the effects of COVID-19 on
 - Critical Access Hospitals
 - Long Term Care Hospitals
 - Hospitals in other countries
- As improved measures of Quality of Care become available
 - Adjustment for quality can be made with
 - Broader scope & applicability of the metrics

23

PRESENTING AUTHORS:

Dana A. Forgione, Ph.D., CPA, CMA, CFE

Endowed Chair of the Jessie Francis Neal Foundation & Clifton W. Coonrod Endowment Professor of Accounting Texas A&M University Corpus Christi 6300 Ocean Drive Corpus Christi,TX 78412 USA Tel.:+1.361.825.5560 Email: dana.forgione@tamucc.edu

Arpita Shroff, Ph.D., CPA

Assistant Professor of Accounting University of Houston-Downtown One Main Street Houston,TX 77002 USA Tel.: +1.713.221.8609 Email: shroffa@uhd.edu